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SUMMARY

This paper describes a finite element numerical model for the simulation of both steady and truly transient
turbulent flow in two dimensions. All elements of the model and computational approach were chosen, however,
for ease of applicability in the future to fully three-dimensional flows. The turbulent mean flow is described by
the Reynolds-averaged Navier–Stokes equations. The well-known two-equationK e model is the base for the
representation of turbulence quantities. From three candidate algebraic stress models, Rodi’s model was chosen
for implementation after preliminary tests on turbulent channel flow. The scheme was then tested at length on
flow past a backward-facing step and flow past a box. Comparisons were made with the computed and
experimental results of other investigators. For the backward-facing step problem the model appears to equal or
improve upon the accuracy of predictions of earlier finite element codes. The frequency of vortex shedding from
the corners of the box in terms of the Strouhal number is predicted well.# 1997 by John Wiley & Sons, Ltd.
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INTRODUCTION

The numerical simulation of any transient turbulent flow attempts to overcome several difficult
problems. The convective acceleration term in the Reynolds-averaged form of the equation for
conservation of linear momentum are non-linear, and the use of any but the simplest eddy viscosity
model of turbulent transport will introduce additional non-linearities and coupling between the mean
flow equations and the turbulence model itself. Moreover, many turbulent flows possess features that
absolutely require a time-dependent computation; the generation and shedding of vortices from the
corners of solid objects in the flow are only one such example. Although most work in past years on
such problems has been based on finite difference methods, the present effort is finite-element-based.

This paper will describe progress towards the long-term goal of developing a three-dimensional
finite element code for the simulation of transient turbulent flows, although the focus of this paper
will be on a two-dimensional implementation and testing of the algorithm. The mean flow model is
based on the Reynolds-averaged Navier–Stokes equations, also called simply the Reynolds equations,
for incompressible flow. The Reynolds stress terms could be modelled by the two-equationK e

model, and this was done at an intermediate stage of the development. However, this model was in
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the end augmented by an algebraic stress model chosen from three candidate models. This step was
taken to separate the values of the turbulent normal stresses; as is well known, this feature is essential
in the representation of flows such as turbulent flow in a rectangular duct. Rodi’s algebraic stress
model (ASM) was chosen for use in this project. The code was tested extensively in simulating
turbulent flow past a backward-facing step and around a square cylinder or box; in both examples the
code was quite successful in simulating the features of these flows.

MEAN FLOW AND TURBULENCE MODEL EQUATIONS

The Reynolds decomposition was used to develop the mean flow equations for conservation of mass
and linear momentum for an incompressible fluid. They are
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where Ui is the time-averaged mean flow velocity component,ui is the fluctuating velocity
component,P is the mean flow pressure divided by the density,t is time, xi is the Cartesian co-
ordinate direction,n is the fluid kinematic viscosity andÿuiuj is the Reynolds stress per unit mass. In
all equations the Einstein convention is used, wherein a repeated subscript within a term implies
summation over the full subscript range.

In equations (1) and (2) one can clearly see that the number of fluid variables exceeds the number
of equations. To achieve closure of this equation set, one must make assumptions about the nature of
the turbulent flow. Each different closure is called a turbulence model; many such models exist, but
most fit into only a few categories.

The K e model,1 which employs the eddy viscosity concept, forms the base of the turbulence
representation that will be used in this project. In principle the processes of turbulence production,
dissipation, redistribution and diffusive transport are all present in any model variant that is built on
this base representation; here it will be augmented by an algebraic stress model to separate the normal
stresses. The constitutive law that introduces the eddy viscosity concept is

ÿuiuj � 2ntDij ÿ
2
3 Kdij; �3�

in which K � uiui=2 is the turbulence kinetic energy per unit mass,nt is the kinematic eddy viscosity
andDij is the mean rate-of-strain tensor defined by
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The kinematic eddy viscosity can, using dimensional analysis, be expressed in terms ofK and the
energy dissipation ratee in the form

nt � cm
K2

e
: �5�
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Then the distribution of the scalar turbulence parametersK ande over the flow domain is described
by two semi-empirical transport equations which complete theK e model:
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is the production of turbulence by the mean-flow shear. In these equations D=Dt is the material
derivative. In equation (6) the transport ofK is influenced by terms representing diffusive transport,
turbulence production by the mean-flow shear and by the dissipation ratee. In equation (7) the
transport ofe is modelled in terms of diffusive transport, source and sink terms on the right. The
empirical constants take the standard values1 cm � 0�09; ce1 � 1�44; ce2 � 1�92; sK � 1�0 and
se � 1�3.

To model the individual Reynolds stresses without resorting to the use of additional partial
differential equations, researchers have created algebraic stress models; these augment the twoK e

transport equations with a constitutive model that does not require an additional partial differential
equation for each individual stress component. Over a half dozen such models have been proposed
since Rodi proposed the first of these models.

This research investigated three models developed by Rodi,2 Speziale3 and Ahmadi and
Chowdhury.4 Rodi’s final constitutive equation is
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and the coefficients5 ca1 � 2�5 and ca2 � 0�55. From equation (8) one sees that Rodi’s model,
equation (9), is non-linear in the Reynolds stresses; comments on the treatment of this feature will be
found in two places later in the paper. Speziale’s stress model6 is
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in which ~Dij is the Oldroyd derivative defined by
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andCD � CE � 1�68. Ahmadi’s model4 describes the Reynolds stresses as
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in which the Jaumann derivative and vorticity are respectively
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with a � 0�93 andb � 0�54 for flow near a wall. These last two models both contain many more
terms than Rodi’s model but are linear in the Reynolds stresses; in contrast, they are highly non-linear
in K and e via the eddy viscosity itself. An early objective of this research was to compare the
performance of these three models for a standard flow using the present numerical modelling
techniques and to select one model for further use.

NUMERICAL MODELLING TECHNIQUES

After a preliminary screening of algorithmic choices, it was decided to pattern this numerical solution
after the work of Greshoet al.,7 who developed an efficient transient code for laminar flows, in their
general approach to computations. A reading of the 40 pages of Reference 7 will explain much about
the features of this approach, so this section will simply describe the primary features of this
implementation and also emphasize some differences. This modified finite element method was first
applied to turbulent flows by Haroutunian,8 who used aK e model to describe the turbulence
parameters. Reference 9 also supplies much additional detail on these techniques. In this method the
individual element representations of the unknowns are simple, and the basic time integration scheme
is also very simple but fast. However, accuracy in integration is still retained by using the balancing
tensor diffusivity approach, as Greshoet al.7 explain. While this paper discusses only two-
dimensional examples and uses only quadrilateral elements, these computational techniques are
carefully chosen to be also applicable directly to three-dimensional problems and additional element
shapes. Moreover, the solution strategy is actually best suited for the simulation of flows which are
inherently transient and have no steady flow analogue.

The basic approach is a modified Galerkin finite element method. Here the Galerkin method
spatially discretizes the partial differential equations of transient flow into a system of ordinary
differential equations, which is then integrated in time using the explicit forward Euler technique.
The spatial numerical integration process used one-point Gaussian quadrature, which is accurate for
all terms with the exception of the diffusion terms. The inaccuracies were corrected by adding an
‘hour-glass’ correction term.7 The continuity constraint is satisfied at every time by computing
pressures from a Poisson equation for the modified pressure^P � P � 2K=3. The Poisson equation is
derived from the original momentum and continuity equations. The resulting modified pressure
matrix is symmetric, thus requiring one to store only the upper triangular terms. The matrix entries
depend only on the mesh topology, so the matrix must be inverted only once and then stored. The
modified pressure and the pressure itself are then found by a direct back substitution.

The mean flow velocity components and alsoK ande are all interpolated linearly, but the modified
pressure is piecewise constant within an element; the Galerkin weighting of the Reynolds,K and e
equations is also linear. In all equations the second-order diffusive terms are integrated once by parts.

The explicit forward Euler method is used for time integration. As is well known, this approach is
destabilizing because of the numerical diffusion that is created, especially in convection-dominated
flows. The balancing tensor diffusivity scheme7 is used to counter this false, negative diffusion for
both the mean flow and theK e model variables. The net effect is to add locally a term of the form
UiUjDt=2 to the usual coefficient of the diffusive term. In addition, theK e model time integration
scheme is modified somewhat to make it actually semi-implicit.9
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The Rodi ASM is an implicit model, since the individual stresses appear on both sides of the model
equations. Various kinds of solution procedures for these equations have in the past led to divergent
computations. After some searching, two computational steps were found to produce a fast, simple
algorithm which does not blow up. The first step is simply to evaluate the stresses on the right side of
the ASM equations at the beginning of each time step (i.e. lagging them by one time step), avoiding
iterations and taking advantage of the fact that the individual time steps are small. The second step is
to set an upper limit on the allowable magnitude of the source terms in the ASM and locally ‘clip’ any
source terms which exceed the limit. More will be said about this ‘clipping’ in the section on
examples.

The boundary and initial conditions for each problem will be described with the problems.

EXAMPLES AND DISCUSSION

The first tests9 of this finite element code checked to verify that the algorithm, without the turbulence
model, could simulate laminar flows properly. Turbulent channel flow9,10 was then used, as has been
previously reported,10 as a test problem both to check further the basic algorithm and to compare the
performance of the three different algebraic stress models.

In this section some results of extensive code testing for turbulent flow over a backward-facing step
will be described. Then new results will be presented for turbulent flow around a square box. In this
work some computations employed up to 4004 nodes and a proportional number of time steps.

The codes for this project were developed in Pascal to take advantage of compiler features, but the
graphics codes were developed in Fortran to use Fortran library routines to drive a Tektronix terminal
emulator. A more efficiently executing production code could have been produced in Fortran, but the
code would have required many more statements. Such a Fortran code was not written, and it is the
authors’ opinion that run statistics from the Pascal code might not be representative of the efficiencies
that could be achieved via these methods. Also, to check the progress of computations, some
executions were periodically halted and later restarted; these restarts had a noticeable but not easily
quantifiable effect on overall CPU time and on the number of time steps in a solution. Storage
requirements were not large; for example, for all examples the solutions of the symmetric, banded
pressure matrix were completed in core.

Results from the fully developed channel flow problem

The governing equations for this problem are essentially diffusion equations. The ASMs and the
K e model itself lead to continuum equations that are identical, but the numerical procedures are not
quite the same. For all variants of this problem, two-dimensional elements were tested, although the
problem did not require their use. It must be remarked that none of these particular algebraic stress
models was constructed specifically for flow in the proximity of a wall; other models, or even other
versions of some of these models, could perform better in this particular comparison. However, it was
felt that this test comparison was an impartial comparison precisely because none of the models was
specially developed for the test problem.

In applying just theK e model, once calculates the gradient of the mean velocity and the
kinematic eddy viscosity directly. In applying the algebraic stress models, the Reynolds stress was
first computed at the element centroids; then these values were smoothed to the element nodes, and
finally the gradients of Reynolds stress were computed from these smoothed values. Testing this
computational sequence was a precursor to the application of the ASM to the other two problems.
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For turbulent channel flow the algebraic stress models predict somewhat differing stress relations.
As Schamber11 has shown, the Rodi model predicts

uu � 0�94K; vv � ww � 0�53K; uv � ÿ0�33K: �15�
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while Ahmadi’s model4 predicts the Reynolds stresses as
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For the channel flows there is clearly no difficulty in representing the individual stresses with linear
elements. Results for profiles of mean velocity, turbulence kinetic energy and Reynolds stress were
all obtained from theK e model and from the ASMs;9,10 they were carefully compared with data
from References 12–14. The results are judged to be very good and are in agreement with those of
other numerical investigators.8,15

A limited selection of the results of these computational tests is shown in Figures 1–4. In Figure 1
non-dimensional mean velocity profiles are presented for theK e and algebraic stress models and
compared with Laufer’s experimental data. (Speziale’s profile matched Ahmadi’s profile and is not
shown.) While all models do rather well, Rodi’s profile compares best with Laufer’s data, and the
other computed profiles are about 2 per cent low. In the next three figures the individual non-
dimensional normal Reynolds stress components are compared with the experimental data of Laufer
and Clark. In Figure 2 one sees the separation of normal Reynolds stresses with qualitatively good
comparisons with Laufer’s data for Rodi’s ASM. One sees in Figure 3 that the three normal Reynolds
stresses are all separated by Speziale’s ASM; the shapes of the curves compare well with Laufer’s
data, but the numerical values are high. For the channel flow problem this model produces the best
Reynolds stress comparisons. In Figure 4 Ahmadi’s ASM separates the normal stresses with
uu > ww > vv, but the shape of thevv profile is incorrect. Theuu and ww profile shapes match
Laufer’s data well, but the numerical values are too high and too low respectively. After comparisons
were completed, the overall results predicted by Rodi’s ASM were judged to match Laufer’s stress
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data better than the results from the other two models, especially when the relative simplicity of this
model is considered, and Rodi’s ASM was then selected for further use.

Flow over a backward-facing step

This problem has served as a benchmark for experimentalists and numerical studies for years. At
least seven previous numerical and eight experimental investigations of this turbulent flow problem
have been conducted.9 This work will compare present predictions primarily with the experimental
results of Kim16 and the numerical results of Haroutunian.8 Figure 5 is a schematic diagram (note

Figure 1. Mean flow velocity profiles for half-channel. Rodi’s ASM closely matched Laufer’s profile. Speziale’s ASM matched
the profile from Ahmadi’s ASM and is not shown

Figure 2. Non-dimensional normal Reynolds stress profiles for half-channel, according to Rodi’s ASM. Comparisons are made
with the experimental data of Laufer and Clark. Rodi’svv andww components are the same
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scales on the figure) of the basic mesh and boundary conditions for a step increase in duct width from
2H to 3H, whereH is the step height; the mesh is 43 by 67 nodes, including 288 which are zeroed out
within the step. Along wall boundariesu* ande are

u* �

kUW

ln�Eyn�c
1=2
m K�

1=2
=n�

; e �
�c1=2
m K�

3=2

kyn
; �18�

in which UW is the wall velocity,k � 0�40 is the von Kármán constant,yn is the stand-off distance
from each solid wall to the edge of the computational mesh, chosen so that304 u*yn=n4 100, andE

Figure 3. Non-dimensional normal Reynolds stress profiles for half-channel, according to Speziale’s ASM. This model
produced the best normal stress comparisons with the experimental normal stress data of Laufer and Clark

Figure 4. Non-dimensional normal Reynolds stress profiles for half-channel, according to Ahmadi’s ASM. Comparisons are
made with the experimental data of Laufer and Clark. The normal stresses are separated, but values ofuu and vv are

respectively higher and lower than Laufer’s data
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is a constant which depends on the wall smoothness. In this caseyn=H � 0�025. Inlet section data
were obtained from the fully developed channel flow problem. The transient simulation could in
principle be initialized with any divergence-free velocity field.7 All other boundary conditions for this
flow are shown in Figure 5 itself.

A typical streamline plot is presented in Figure 6 for flow at a Reynolds number of 47,000 based on
the step height and maximum inlet velocity; if the Reynolds number were based on the mean inlet
velocity, it would be somewhat lower. Results in this particular figure were computed with theK e

model itself, and the computed separation length, i.e. the distance along the lower wall from the step
to the intersection of the zero streamline, wasy=H � 6�7, which compares well with Kim’s
experimental value of 7�0� 1�0. As with first eight rows of Table I show, this prediction compares
better with Kim’s measurement than do the predictions of almost all other numerically basedK e

codes (all entries in the table are for a Reynolds number of 45,000 except the present work). In this
computation the Reynolds stresses were computed at the element level and then smoothed to the
nodes at each time step. The source termG was computed from velocity gradients at the element
centroids. Then the nodal Reynolds stresses were averaged to obtain the subsequent centroidal values.
This process had the effect of making the computed separation longer. When the Reynolds stresses
were computed at the element centroids and not redistributed to the nodes, as is done when using the
algebraic stress model to reduce computing costs, the predicted separation zone length changed to
about 6�3, which is almost identical with Haroutunian’s result. Only two other reports of separation
lengths above 6�0 appear. Thangan and Speziale report the need to use a special wall model to
achieve their value of 6�25, while Lee’s work, like Kim’s experiment, has a flatter than normal
velocity profile at the entrance, leading to longer separation regions.

When the flow field was computed with the ASM, the resulting separation length was 6�6, which
again compares favourably with similar entries in Table I. Early computations with this numerical
scheme failed, however, apparently owing to a feedback between mean flow velocity gradients and

Figure 5. Backward-facing step mesh and boundary conditions. Additional boundary conditions areV � 0 atop the step and
U � 0 on the vertical side;K ande are as for other solid boundaries
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turbulence model source=sink terms. A remedy for this problem without resorting to upwinding or the
direct addition of more numerical diffusion was sought; eventually it was discovered that a simple
restriction on the magnitude of the ASM source terms, called ‘clipping’, led to a successful, stable
result. This process was actually employed less than 20% of the time during computations and never
involved more than 16 nodes (less than 1% of the nodes in the field), all immediately downstream of
the nose of the step where the shear is greatest. Local mesh refinement, a common remedy for this
kind of problem, may not be a solution, since this would produce still shorter distances between nodes
and could enhance the intensity of local gradients.

The ‘clipping’ process, in addition to being a way to stabilize computations, is related to the desire
to create a code that could easily switch between the solution of theK e model and the ASM. First
the momentum equation (2) was rewritten in the form
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This last term is the difference in an individual Reynolds stress per unit mass between the predictions
of theK e model and the (Rodi) ASM. The stress terms were bilinearly discretized over an element,

Figure 6. Streamlines for backward-facing step

Table I. Separation lengths for backward-facing step

Investigator Approach Separation
lengthL=H

Kim16 Experiment 7�0�1�0
This work K e 6�3–6�7
Betts and Haroutunian17 K e 6�25
Haroutunian8 K e 6�3
Speziale and Ngo6 K e 5�5
Thangam and Speziale18 K e 6�0

With wall model K e 6�25
Lee19 K e 7�1
This work ASM 6�6
Speziale and Ngo6 ASM 6�4
Ahmadi and Chaudhury4 ASM 6�5
Thangam and Speziale18 ASM 6�8
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the rest of the discretization process being as described earlier, and with a few binary switches the
computer code could move from one model to the other. The ‘clipping’ was a limitation on the size of
Ri. The clipping level of 5�0 6 1074 (units are m s72) was chosen by running the code for a few time
steps and noting that the magnitude of the source termRi was about 1�0 6 1074. In fact, this clipping
level worked so well that no additional experimentation with the level of clipping was done.

A contour plot of the normalized turbulence kinetic energy per unit mass,K=U2
0 , predicted by the

K e model is presented in Figure 7. It shows a single maximum of 0�045 located about five step
heights downstream of the step. With the ASM the contours are very similar, with a single maximum
of 0�043 at six step heights downstream. Interestingly, Haroutunian8,17shows two maxima of 0�041 at
five step heights downstream and immediately downstream of the step. The present work also
predicts two maxima (magnitudes 0�041 and 0�071) at the same locations when in the computations
the Reynolds stresses were computed at the element centroids and not redistributed to the nodes. A
contour plot of the normalized dissipation ratee=�U3

0 =H� is indistinguishable from that of
Haroutunian8 and is not presented here.

The value of the ASM computation in relation to the analogousK e computation can be seen most
clearly in contour plots of the (negative of the) normalized Reynolds stresses per unit mass,
uu=U2

0 ; vvU2
0 and uv=U2

0 , in Figures 8–10, computed with the ASM. In anyK e prediction the
normal stresses must be the same, but an ASM separates the individual values. In Figure 8 the
maximum value ofuu=U2

0 is 0�041 atx=H � 5�5, whereas theK e model predicts a maximum of
0�03 atx=H � 5�8 and Eton20 measured a maximum of about 0�045. In Figure 9 the maximum value
of vv=U2

0 is 0�024 atx=H � 5�6, which is lower than the other normal stress component by about
25%. The shear stress contours, Figure 10, are quite similar to the result of theK e computation but
somewhat higher. Ross9 presents an additional 30 or so plots of results for this problem.

Kim’s experiments on this flow developed profiles of the horizontal velocity and Reynolds stresses
at various sections downstream of the step. Figures 11–15 compare these experimental results with
corresponding results from computations for theK e model and the ASM model.

The normalized horizontal velocity profiles, Figure 11, generally indicate that the results from the
K e model differ little from the ASM results, and both match the experimental results reasonably
well near the step atx=H � 1�5 and 2�6 (x is the horizontal distance andH is the step height). The
inlet conditions for Kim’s experiment generated a flatter inlet velocity profile which in turn created
higher horizontal velocity components, indicated by the profiles, than are predicted by the uniform
channel flow used in this study. The separation length calculated with both theK e model and the
ASM could probably have been increased by using a flatter inlet velocity profile. Further downstream
at x=H � 5�5 both turbulence models underpredict the negative horizontal velocity components along
the wall, which is associated with the shorter calculated circulation zone. At sectionx=H � 10�5 the

Figure 7. Contour plot of non-dimensional turbulence kinetic energy per unit mass,K=U2
0 , contour interval 0�004, for flow over

backward-facing step
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experimental data indicate that the velocity is returning to a normal channel flow distribution sooner
than is predicted by either computational model.

Comparisons of the normal Reynolds stresses at several sections downstream of the step are shown
in Figures 12–14. These profiles clearly show that the ASM distinctly separates the magnitudes of the
horizontal and vertical stress components, while theK e model does not do so. At the sections closer
to the step (x=H from 4�0 to 10�5) the normal Reynolds stresses predicted by the ASM more closely
match the experimental data than do the predictions of theK e model. Further downstream at
sectionsx=H of 13�5 and 15�5 the normal Reynolds stressesuu=U2

0 are overpredicted by the ASM and
underpredicted by theK e model. The Reynolds stressesvv=U2

0 predicted by both models are nearly
identical and closely match the experimental data. The magnitudes of the horizontal and vertical
normal stresses from theK e model are almost identical. This means that the normal stresses for the

Figure 8. Contour plot of non-dimensional normal Reynolds stressuu=U2
0 , contour interval 0�004, for flow over backward-

facing step

Figure 9. Contour plot of non-dimensional normal Reynolds stress per unit mass,vv=U2
0 , contour interval 0�003, for flow over

backward-facing step

Figure 10. Non-dimensional contour plot ofuv=U2
0 , contour interval 0�002, for flow over backward-facing step
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K e model from equation (3) are more dependent upon the turbulence kinetic energy than on the
gradients of the velocity.

The shear stress profiles are shown in Figure 15. The ASM predictions of shear stress are closer to
the experimental data in the zones of high shear downstream of the step. Further downstream both the
ASM and theK e model overpredict the shear stress.

Figure 11. Comparison of mean horizontal velocity profilesU=U0 at various locations downstream of step. The maximum inlet
velocity is U0 andH is the step height. The experimental data are taken from Reference 16
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Flow around a box

The two-dimensional turbulent flow around a square cylinder or box is an intrinsically transient
problem in which vortices are alternately shed from the forward corners; the dominant shedding
frequencyf is usually stated in terms of the Strouhal numberS � fH=U0. The technical literature
abounds with computations of laminar flow around a box, but only Franke and Rodi21 and

Figure 12. Comparison of normal Reynolds stresses atx=H of 4�0 and 7�0 downstream of step. The maximum inlet velocity is
U0 andH is the step height. The experimental data are taken from Reference 16
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Haroutunian22 appear to have computed the turbulent flow about a box. Also, some work appears to
have been done in the laboratory; notable experiments have been reported by Dura˜o et al.23 and
Okajima.24

This problem was first studied with a relatively coarse 2200-element mesh and results were
obtained for theK e model and the ASM. To confirm the early results, to learn something of the

Figure 13. Comparison of normal Reynolds stresses atx=H of 8�5 and 10�5 downstream of step. The maximum inlet velocity is
U0 andH is the step height. The experimental data are taken from Reference 16
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effect of further mesh refinement and to produce smoother plots, a 4004-element mesh, was also used
for the ASM. In each case the domain was 10 by 20 box heightsH �ÿ5�04 x=H 4 15�0 and
ÿ5�04 y=H 4 5�0�, which is similar to the 14 by 20 domain used by Franke and Rodi.21 For
comparison purposes the chosen Reynolds number was 23,500 based onU0 � 2�35 m s71 and
H � 0�1 m; in additionyn=H � 0�05 was used. Figure 16 shows the finer mesh and lists boundary

Figure 14. Comparison of normal Reynolds stresses atx=H of 13�0 and 15�5 downstream of step. The maximum inlet velocity
is U0 andH is the step height. The experimental data are taken from Reference 16
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Figure 15. Reynolds shear stress profiles predicted by ASM andK e models compared with Kim’s16 experimental data
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conditions on it. Franke and Rodi21 indicate that special wall functions were needed to initiate the
shedding of vortices. Here on the box surfaces the wall law given in equation (18) was applied
without alteration, and normal mean velocities were zero, including the corners of the box. The
remaining boundary conditions for this problem are shown in Figure 16.

The K e model on the course mesh was initialized and run for a time interval which was shorter
than that required to begin shedding vortices (the initial shedding time is about 6 s); the outcome of
this run was used to initialize all subsequent computations. TheK e computations simply continued
from this start. The ASM computations continued on the coarse mesh and were regularly shedding
vortices by 6�0 s. The ASM computations on the finer mesh were started from the coarse mesh result
at 6�0 s.

Figure 17 is the streamline pattern from the finer mesh at a time of 7 s; this data set was compared
with K e and ASM results from the coarser mesh. For this flow Okajima24 found the Strouhal
number to be 0�12–0�13. From this fine mesh the Strouhal number was 0�11, while theK e model on
the coarse mesh yielded 0�10 and the ASM on the coarse mesh gave the closest prediction at 0�13. For
detail on determination of the Strouhal number for a flow, see Greshoet al.25 A streamline plot based
on the coarse mesh would possess the same features as Figure 17 but would be more angular.

Contours of normalized turbulence kinetic energyK=U2
0 are presented in Figure 18. A small zone

of high energy which appeared with the vortex in the coarse grid does not appear here, but three other
zones of locally high energy can still be seen. Some clipping is used to keep the energy at these points
within reasonable bounds; the clipping process was never applied at more than 113 of the 4000 nodes
and the average contour number involved was about 50 nodes, mostly at points in the wake region.
Not surprisingly, a plot for the dissipation rate is very similar in form to this figure. Similar results for
both variables were obtained for both models on the coarse mesh.

Figure 16. Computational mesh and boundary conditions for 4004-element model of flow around box
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A pair of contour plots for the normalized normal Reynolds stressesuu=U2
0 andvv=U2

0 is presented
in Figures 19 and 20. The stress distributions are similar but by no means identical. For the interested
reader Ross9 presents over 40 additional plots of results for this problem.

CONCLUSIONS

The present finite element model of transient turbulent flow has done well in several benchmark tests
of its ability to simulate fully developed flow in channels, the flow past a backward-facing step and
the flow past a square box. Consequently, this computational scheme deserves full consideration as a
viable computational method for implementation in the computation of three-dimensional transient
turbulent flows.

Figure 17. Streamlines predicted by 4004-element ASM for turbulent flow around box at Reynolds number 23,500 at time 7 s

Figure 18. Contour plot of non-dimensional turbulence kinetic energy per unit mass,K=U2
0 , contour interval 0�02, for 4004-

element ASM of turbulent flow around box
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The initialization procedures for the computational scheme performed well. The balancing tensor
diffusivity terms appear to compensate well for the numerical diffusion that is a part of using the
explicit forward Euler time integration. The novel but infrequently required ‘clipping’ of some source
terms appears to be a simple but successful way to stabilize computations in the algebraic stress
model portion of the method.

In the comparisons that could be made with the results of other computations or with experimental
data, whether they be mean flow streamline patterns or separation lengths or the distribution of
various turbulence parameters, or in the comparison of computed Strouhal numbers with experiment
for the shedding of vortices from the box, the results from this numerical model appear to meet or
exceed in accuracy the results of most other computations.

Shortly after the computations reported herein were completed, Gatski and Speziale26 published a
new explicit ASM and also commented on the history and causes of problems in using implicit

Figure 20. Contour plot of non-dimensional normal Reynolds stressvv
2
0, contour interval 0�02, for 4004-element ASM of

turbulent flow around box. The maximum value is about 0�08 at the leading corners of the box

Figure 19. Contour plot of non-dimensional normal Reynolds stressuu=U2
0 , contour interval 0�02, for 4004-element ASM of

turbulent flow around box. The maximum value is about 0�10 at the leading corners of the box
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models. Their model is made explicit by the use of integrity basis functions from linear algebra and
MathematicaTM to do the actual algebra.27 Their model is certainly elegant in comparison with the
simple strategem of clipping. In the future one would expect to see the explicit model used in many
computations if the effort of implementing it is not a deterrent. On the other hand, the simple,
unsophisticated strategy of clipping may also receive some attention in future research and continue
to be a useful tool.
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